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The mass-transfer phenomena at the electrodes and, in particular, the diffusion 
of oxygen at the cathode significantly affect the limit performance of PEMFCs.  Some 
particular geometric arrangements, such as the interdigitated or serpentine, have 
demonstrated their effectiveness in lowering diffusive resistances. 

It is possible to have a better understanding of these phenomena by 
determining the various possible diffusive regimes taking place inside the porous layer 
close to the electrodes.  In each regime the interaction between the diffusive and forced 
flows can be expressed in terms of Peclet number and the overall diffusive resistance in 
terms of Sherwood number. 

In this way, the comparison of traditional and non-traditional geometric 
arrangements can be studied in greater detail, so that the problems relating to the 
simulation and optimisation of the cell can be more efficiently dealt with. 
A model of the gas-phase mass-transfer resistance at PEMFC electrodes has been set up 
and in this paper a comparison of an approximate and a numerical solution for the 
model will be presented; the results of the two different approaches show good 
agreement in terms of limit regimes. 
 
1. Introduction 
The important role of mass-transfer phenomena, and in particular of the diffusion of 
oxygen at the cathode, in lowering the limit performance of polymeric membrane fuel 
cells (PEMFCs) is now universally known. 
To better understanding these phenomena (Arato and Costa, 2006a) it is useful to 
distinguish the various possible diffusive regimes taking place inside the porous layer 
close to the electrodes; by expressing the interaction between diffusive and forced flows 
in terms of Peclet numbers and the overall resistance in terms of Sherwood numbers, 
which are, in turn, a function of the Peclet number, three regimes can be defined. This 
preliminary approach, based on a simplified physical-mathematical description and its 
analytical solution, has been shown to be effective in explaining some of the important 
differences in the performance of different cell geometries, both traditional and non-
traditional, especially in terms of the limit current. 
Both interdigitated (Sukkee and Wang, 2004, Yi and Van Nguyen, 1999) and serpentine 
(Zhukovsky and Pozio, 2004) cells can be operated at high Sherwood numbers, 
corresponding to high limit currents, but both are correspondingly penalised by higher 
head losses then traditional cells. 



The approximate results (Arato et al., 2006b) of the analytical solution can be useful for 
comparing the various geometric arrangements and their simulation and optimisation 
problems. 
On the other hand, a rigorous estimation of the Sherwood number (Arato et al., 2007) is 
useful for obtaining a detailed description of the electrochemical kinetics and a more 
reliable comparison of the different channel geometries. 
 
2. The Model 
Making reference to a couple of parallel channels and to a porous layer through which 
the reaction gas has to migrate and diffuse before reaching the reaction site on the 
electrode, the spatial domain considered, shown in Figure 1, has a rectangular h(b+d) 
section. 
The diffusion and migration phenomena in the partial hd domain can be described 
according to the differential equation (Zhukovsky and Pozio, 2004): 
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The assumed simplifying hypotheses are: 

 Steady state, as the diffusion times of the porous layer are less than 1s; 
 Two-dimensional geometry; 
 Uniform properties in the gas phase, assuming that the variation in temperature 

and pressure can be considered negligible and a dilute gas phase; 
 Viscous regime inside the porous medium, as the Reynolds numbers of the 

medium itself are normally lower than unity; 
 Instantaneous reaction at the electrode surface, which corresponds to limit 

current conditions; 
 Null orthogonal velocity at the boundaries, which implies, among other things, 

an instantaneous reaction on the electrode surface. 
To calculate the migration velocity a simple integrated form of the Darcy equation for 
incompressible fluid 
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is sufficient; in fact, as the pressure differences are low, the flow field can be assumed 
to be uniform and h<<d. 
 

3. The Approximate Solution 
3.1 The Limit Regimes  
The limit regimes taking place inside the porous layer close to the electrode can be 
defined (Arato and Costa, 2006a) by comparing the axial and the transversal diffusion 



times (along the y and x axes respectively) to the residence time inside the porous 
medium itself. 
In this way we obtain two dimensionless parameters, such as the axial Peclet number 
and the transversal Peclet number, with reference to which the role of the diffusive 
phenomena is discussed. 
 

 
Figure 1: The spatial domain considered 
 
As d>>h normally, it can assumed that Pex<<Pey, so we principally refer to this 
equation. In particular, when Pey<<1 the regime close to the electrode can be considered 
purely diffusive and the reagent flux depends on the mean driving force and is 
independent by the velocity; when Pey>>1 a forced regime must be considered and the 
effects of axial diffusion can be neglected when compared to the forced migration. 
Moreover, two forced sub-regimes can be considered: a flow rate-controlled regime, 
characterised by Pey>>1 and Pex<<1, in which case the flux to the electrode is directly 
proportional to the velocity, and a pellicular-forced regime, characterised by Pey>>1 and 
Pex>>1, in which case the flux to the electrode is proportional to the square root of the 
velocity. In the first sub-regime the entire reagent reaches the electrode, while in the 
second the residence time is too short for the transversal diffusion times, so that only the 
reagent in a thin pellicular layer near the electrode can be consumed. 
The ratio of the calculated flux and a reference flux, corresponding to the diffusion in 
the homogeneous gas phase of a square section bb of a channel, defines the Sherwood 
number. Obviously, for a complete analysis, the area under the channels must also be 
considered, above all in the case of pure diffusion. In such a way, we can obtain (Arato 
et al., 2006b) a constant value of the Sherwood number for the first limit regime 
considered; for the flow-rate forced regime the Sherwood number is directly 
proportional to the transversal Peclet number; while for the pellicular-forced regime the 
Sherwood number depends on the square root of the transversal Peclet number. 
In Figure 2 the dependence of the Sherwood number on the transversal Peclet number 
for the three limit regimes is reported. 
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Figure 2: An example of dependence of Sh on Pey 

4. The Numerical Solution 
A rigorous calculation of the Sherwood number (Arato et al., 2007), which quantifies 
the mass transfer resistances close to the electrode, was performed using a Fortran code, 
which calculates the flow field, the composition field and the overall flux to the 
electrode, with a relaxation convergence method.  
In the case of a parallel-channel configuration, such as the one typically used in 
interdigitated cells, the calculated flow field shows some symmetry properties, such as 
the absolute value of velocity as reported in Figure 3. 
Figure 4 represents an example of a calculated composition field. The mean thickness of 
the “exhaust” layer close to the electrode depends on the mean migration velocity and 
becomes finer as the velocity increases. 
Finally, in order to describe the composition field in terms of a Sherwood number, it is 
possible to calculate the Sh(Pey) function. The comparison of this curve and the 
approximate curve is reported in Figure 5. 
 
5. Conclusions 
To obtain a detailed and accurate description of the electrochemical kinetics and so a 
more reliable comparison of the various geometric arrangements used for the 
distribution of the reactants, it is necessary to calculate the Sherwood number in a 
rigorous way. 
In fact, as already discussed in other works, both interdigitated and serpentine cells can  
operate at high Sherwood number, corresponding to high limit currents, even if both are 
penalised by higher head losses than traditional cells, so a better understanding of this 
features can help in obtaining a geometric optimisation of the cell. On the other hand, 
the comparison of the solutions of the approximate approach and the results of the 
numerical ones in terms of flow regimes shows good agreement.  
For a preliminary estimation, therefore, the former approach is substantially accurate 
and particularly useful. 
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Figure 3: The absolute value of the reduced velocity field  for Pey=100. 
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Figure 4: The reduced composition field for Pey=300. 

6. Symbols 
b width of channel     [m] 
d length of the diffusive layer     [m] 
D effective diffusivity in the porous medium  [m2s-1] 
h thickness of the diffusive layer     [m] 
k permeability of the porous medium   [m2] 
P absolute pressure      [kg m-1s-2] 
Pe Peclet number     [-] 
Sh Sherwood number     [-] 

v velocity in the porous medium    [m s-1] 
x spatial co-ordinate, perpendicular to the electrode [m] 



y spatial co-ordinate, parallel to the electrode  [m] 
µ viscosity of the gas      [kg m-1s-1]  
ρ density of the gas      [kg m-3] 
ω mass fraction      [-] 
subscript 
x x-axis, perpendicular to the electrode 
y y-axis, parallel to the electrode 
1 channel 1 
2 channel 2, adjacent to channel 1 
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Figure 5: Comparison of the approximate and numerical solutions. 
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